On the Convergence of Decentralized Gradient Descent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Decentralized Gradient Descent

Consider the consensus problem of minimizing f(x) = ∑n i=1 fi(x) where each fi is only known to one individual agent i belonging to a connected network of n agents. All the agents shall collaboratively solve this problem and obtain the solution via data exchanges only between neighboring agents. Such algorithms avoid the need of a fusion center, offer better network load balance, and improve da...

متن کامل

On Nonconvex Decentralized Gradient Descent

Consensus optimization has received considerable attention in recent years. A number of decentralized algorithms have been proposed for convex consensus optimization. However, on consensus optimization with nonconvex objective functions, our understanding to the behavior of these algorithms is limited. When we lose convexity, we cannot hope for obtaining globally optimal solutions (though we st...

متن کامل

Convergence of Gradient Descent on Separable Data

The implicit bias of gradient descent is not fully understood even in simple linear classification tasks (e.g., logistic regression). Soudry et al. (2018) studied this bias on separable data, where there are multiple solutions that correctly classify the data. It was found that, when optimizing monotonically decreasing loss functions with exponential tails using gradient descent, the linear cla...

متن کامل

Asynchronous Decentralized Parallel Stochastic Gradient Descent

Recent work shows that decentralized parallel stochastic gradient decent (D-PSGD) can outperform its centralized counterpart both theoretically and practically. While asynchronous parallelism is a powerful technology to improve the efficiency of parallelism in distributed machine learning platforms and has been widely used in many popular machine learning softwares and solvers based on centrali...

متن کامل

Robust Decentralized Differentially Private Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the most applied machine learning algorithms in unreliable large-scale decentralized environments. In this type of environment data privacy is a fundamental concern. The most popular way to investigate this topic is based on the framework of differential privacy. However, many important implementation details and the performance of differentially priv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2016

ISSN: 1052-6234,1095-7189

DOI: 10.1137/130943170